Quick Start
Quick start CLI, Config, Docker
LiteLLM Server manages:
- Unified Interface: Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI
ChatCompletions
&Completions
format - Cost tracking: Authentication, Spend Tracking & Budgets Virtual Keys
- Load Balancing: between Multiple Models + Deployments of the same model - LiteLLM proxy can handle 1.5k+ requests/second during load tests.
$ pip install 'litellm[proxy]'
Quick Start - LiteLLM Proxy CLI
Run the following command to start the litellm proxy
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
Test
In a new shell, run, this will make an openai.chat.completions
request. Ensure you're using openai v1.0.0+
litellm --test
This will now automatically route any requests for gpt-3.5-turbo to bigcode starcoder, hosted on huggingface inference endpoints.
Supported LLMs
All LiteLLM supported LLMs are supported on the Proxy. Seel all supported llms
- AWS Bedrock
- Azure OpenAI
- OpenAI
- Ollama
- OpenAI Compatible Endpoint
- Vertex AI [Gemini]
- Huggingface (TGI) Deployed
- Huggingface (TGI) Local
- AWS Sagemaker
- Anthropic
- VLLM
- TogetherAI
- Replicate
- Petals
- Palm
- AI21
- Cohere
$ export AWS_ACCESS_KEY_ID=
$ export AWS_REGION_NAME=
$ export AWS_SECRET_ACCESS_KEY=
$ litellm --model bedrock/anthropic.claude-v2
$ export AZURE_API_KEY=my-api-key
$ export AZURE_API_BASE=my-api-base
$ litellm --model azure/my-deployment-name
$ export OPENAI_API_KEY=my-api-key
$ litellm --model gpt-3.5-turbo
$ litellm --model ollama/<ollama-model-name>
$ export OPENAI_API_KEY=my-api-key
$ litellm --model openai/<your model name> --api_base <your-api-base> # e.g. http://0.0.0.0:3000
$ export VERTEX_PROJECT="hardy-project"
$ export VERTEX_LOCATION="us-west"
$ litellm --model vertex_ai/gemini-pro
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/<your model name> --api_base <your-api-base> # e.g. http://0.0.0.0:3000
$ litellm --model huggingface/<your model name> --api_base http://0.0.0.0:8001
export AWS_ACCESS_KEY_ID=
export AWS_REGION_NAME=
export AWS_SECRET_ACCESS_KEY=
$ litellm --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b
$ export ANTHROPIC_API_KEY=my-api-key
$ litellm --model claude-instant-1
$ litellm --model vllm/facebook/opt-125m
$ export TOGETHERAI_API_KEY=my-api-key
$ litellm --model together_ai/lmsys/vicuna-13b-v1.5-16k
$ export REPLICATE_API_KEY=my-api-key
$ litellm \
--model replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3
$ litellm --model petals/meta-llama/Llama-2-70b-chat-hf
$ export PALM_API_KEY=my-palm-key
$ litellm --model palm/chat-bison
$ export AI21_API_KEY=my-api-key
$ litellm --model j2-light
$ export COHERE_API_KEY=my-api-key
$ litellm --model command-nightly
Quick Start - LiteLLM Proxy + Config.yaml
The config allows you to create a model list and set api_base
, max_tokens
(all litellm params). See more details about the config here
Create a Config for LiteLLM Proxy
Example config
model_list:
- model_name: gpt-3.5-turbo # user-facing model alias
litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
model: azure/<your-deployment-name>
api_base: <your-azure-api-endpoint>
api_key: <your-azure-api-key>
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
- model_name: vllm-model
litellm_params:
model: openai/<your-model-name>
api_base: <your-api-base> # e.g. http://0.0.0.0:3000
Run proxy with config
litellm --config your_config.yaml
Using LiteLLM Proxy - Curl Request, OpenAI Package, Langchain
- Curl Request
- OpenAI v1.0.0+
- Langchain
- Langchain Embeddings
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"TITAN EMBEDDINGS")
print(query_result[:5])
📖 Proxy Endpoints - Swagger Docs
- POST
/chat/completions
- chat completions endpoint to call 100+ LLMs - POST
/completions
- completions endpoint - POST
/embeddings
- embedding endpoint for Azure, OpenAI, Huggingface endpoints - GET
/models
- available models on server - POST
/key/generate
- generate a key to access the proxy
Quick Start Docker Image: Github Container Registry
Pull the litellm ghcr docker image
See the latest available ghcr docker image here: https://github.com/berriai/litellm/pkgs/container/litellm
docker pull ghcr.io/berriai/litellm:main-latest
Run the Docker Image
docker run ghcr.io/berriai/litellm:main-latest
Run the Docker Image with LiteLLM CLI args
See all supported CLI args here:
Here's how you can run the docker image and pass your config to litellm
docker run ghcr.io/berriai/litellm:main-latest --config your_config.yaml
Here's how you can run the docker image and start litellm on port 8002 with num_workers=8
docker run ghcr.io/berriai/litellm:main-latest --port 8002 --num_workers 8
Run the Docker Image using docker compose
Step 1
(Recommended) Use the example file
docker-compose.example.yml
given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.example.ymlRename the file
docker-compose.example.yml
todocker-compose.yml
.
Here's an example docker-compose.yml
file
version: "3.9"
services:
litellm:
image: ghcr.io/berriai/litellm:main
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
Step 2
Create a litellm-config.yaml
file with your LiteLLM config relative to your docker-compose.yml
file.
Check the config doc here
Step 3
Run the command docker-compose up
or docker compose up
as per your docker installation.
Use
-d
flag to run the container in detached mode (background) e.g.docker compose up -d
Your LiteLLM container should be running now on the defined port e.g. 8000
.
Using with OpenAI compatible projects
Set base_url
to the LiteLLM Proxy server
- OpenAI v1.0.0+
- LibreChat
- ContinueDev
- Aider
- AutoGen
- guidance
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
Start the LiteLLM proxy
litellm --model gpt-3.5-turbo
#INFO: Proxy running on http://0.0.0.0:8000
1. Clone the repo
git clone https://github.com/danny-avila/LibreChat.git
2. Modify Librechat's docker-compose.yml
LiteLLM Proxy is running on port 8000
, set 8000
as the proxy below
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
3. Save fake OpenAI key in Librechat's .env
Copy Librechat's .env.example
to .env
and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
OPENAI_API_KEY=sk-1234
4. Run LibreChat:
docker compose up
Continue-Dev brings ChatGPT to VSCode. See how to install it here.
In the config.py set this as your default model.
default=OpenAI(
api_key="IGNORED",
model="fake-model-name",
context_length=2048, # customize if needed for your model
api_base="http://localhost:8000" # your proxy server url
),
Credits @vividfog for this tutorial.
$ pip install aider
$ aider --openai-api-base http://0.0.0.0:8000 --openai-api-key fake-key
pip install pyautogen
from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
{
"model": "my-fake-model",
"api_base": "http://localhost:8000", #litellm compatible endpoint
"api_type": "open_ai",
"api_key": "NULL", # just a placeholder
}
]
response = oai.Completion.create(config_list=config_list, prompt="Hi")
print(response) # works fine
llm_config={
"config_list": config_list,
}
assistant = AssistantAgent("assistant", llm_config=llm_config)
user_proxy = UserProxyAgent("user_proxy")
user_proxy.initiate_chat(assistant, message="Plot a chart of META and TESLA stock price change YTD.", config_list=config_list)
Credits @victordibia for this tutorial.
NOTE: Guidance sends additional params like stop_sequences
which can cause some models to fail if they don't support it.
Fix: Start your proxy using the --drop_params
flag
litellm --model ollama/codellama --temperature 0.3 --max_tokens 2048 --drop_params
import guidance
# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:8000", api_key="anything")
experts = guidance('''
{{#system~}}
You are a helpful and terse assistant.
{{~/system}}
{{#user~}}
I want a response to the following question:
{{query}}
Name 3 world-class experts (past or present) who would be great at answering this?
Don't answer the question yet.
{{~/user}}
{{#assistant~}}
{{gen 'expert_names' temperature=0 max_tokens=300}}
{{~/assistant}}
''', llm=gpt4)
result = experts(query='How can I be more productive?')
print(result)
Debugging Proxy
Events that occur during normal operation
litellm --model gpt-3.5-turbo --debug
Detailed information
litellm --model gpt-3.5-turbo --detailed_debug
Set Debug Level using env variables
Events that occur during normal operation
export LITELLM_LOG=INFO
Detailed information
export LITELLM_LOG=DEBUG
No Logs
export LITELLM_LOG=None