Use with Langchain, OpenAI SDK, LlamaIndex, Curl
Input, Output, Exceptions are mapped to the OpenAI format for all supported models
How to send requests to the proxy, pass metadata, allow users to pass in their OpenAI API key
/chat/completions
Request Format
- OpenAI Python v1.0.0+
- LlamaIndex
- Curl Request
- Langchain
Set extra_body={"metadata": { }}
to metadata
you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"generation_name": "ishaan-generation-openai-client",
"generation_id": "openai-client-gen-id22",
"trace_id": "openai-client-trace-id22",
"trace_user_id": "openai-client-user-id2"
}
}
)
print(response)
import os, dotenv
from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
llm = AzureOpenAI(
engine="azure-gpt-3.5", # model_name on litellm proxy
temperature=0.0,
azure_endpoint="http://0.0.0.0:4000", # litellm proxy endpoint
api_key="sk-1234", # litellm proxy API Key
api_version="2023-07-01-preview",
)
embed_model = AzureOpenAIEmbedding(
deployment_name="azure-embedding-model",
azure_endpoint="http://0.0.0.0:4000",
api_key="sk-1234",
api_version="2023-07-01-preview",
)
documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"generation_name": "ishaan-test-generation",
"generation_id": "gen-id22",
"trace_id": "trace-id22",
"trace_user_id": "user-id2"
}
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"generation_name": "ishaan-generation-langchain-client",
"generation_id": "langchain-client-gen-id22",
"trace_id": "langchain-client-trace-id22",
"trace_user_id": "langchain-client-user-id2"
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Response Format
{
"id": "chatcmpl-8c5qbGTILZa1S4CK3b31yj5N40hFN",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "As an AI language model, I do not have a physical form or personal preferences. However, I am programmed to assist with various topics and provide information on a wide range of subjects. Is there something specific you would like assistance with?",
"role": "assistant"
}
}
],
"created": 1704089632,
"model": "gpt-35-turbo",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"completion_tokens": 47,
"prompt_tokens": 12,
"total_tokens": 59
},
"_response_ms": 1753.426
}
/embeddings
Request Format
Input, Output and Exceptions are mapped to the OpenAI format for all supported models
- OpenAI Python v1.0.0+
- Curl Request
- Langchain Embeddings
import openai
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:8000")
response = client.embeddings.create(
input=["hello from litellm"],
model="text-embedding-ada-002"
)
print(response)
curl --location 'http://0.0.0.0:8000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
"input": ["write a litellm poem"]
}'
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"TITAN EMBEDDINGS")
print(query_result[:5])
Response Format
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
....
-0.0028842222,
],
"index": 0
}
],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 8,
"total_tokens": 8
}
}
/moderations
Request Format
Input, Output and Exceptions are mapped to the OpenAI format for all supported models
- OpenAI Python v1.0.0+
- Curl Request
import openai
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:8000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable"
)
print(response)
curl --location 'http://0.0.0.0:8000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
Response Format
{
"id": "modr-8sFEN22QCziALOfWTa77TodNLgHwA",
"model": "text-moderation-007",
"results": [
{
"categories": {
"harassment": false,
"harassment/threatening": false,
"hate": false,
"hate/threatening": false,
"self-harm": false,
"self-harm/instructions": false,
"self-harm/intent": false,
"sexual": false,
"sexual/minors": false,
"violence": false,
"violence/graphic": false
},
"category_scores": {
"harassment": 0.000019947197870351374,
"harassment/threatening": 5.5971017900446896e-6,
"hate": 0.000028560316422954202,
"hate/threatening": 2.2631787999216613e-8,
"self-harm": 2.9121162015144364e-7,
"self-harm/instructions": 9.314219084899378e-8,
"self-harm/intent": 8.093739012338119e-8,
"sexual": 0.00004414955765241757,
"sexual/minors": 0.0000156943697220413,
"violence": 0.00022354527027346194,
"violence/graphic": 8.804164281173144e-6
},
"flagged": false
}
]
}
Advanced
Pass User LLM API Keys, Fallbacks
Allows users to pass their model list, api base, OpenAI API key (any LiteLLM supported provider) to make requests
You can pass a litellm.RouterConfig as user_config
, See all supported params here https://github.com/BerriAI/litellm/blob/main/litellm/types/router.py
- OpenAI Python
- OpenAI JS
Step 1: Define user model list & config
import os
user_config = {
'model_list': [
{
'model_name': 'user-azure-instance',
'litellm_params': {
'model': 'azure/chatgpt-v-2',
'api_key': os.getenv('AZURE_API_KEY'),
'api_version': os.getenv('AZURE_API_VERSION'),
'api_base': os.getenv('AZURE_API_BASE'),
'timeout': 10,
},
'tpm': 240000,
'rpm': 1800,
},
{
'model_name': 'user-openai-instance',
'litellm_params': {
'model': 'gpt-3.5-turbo',
'api_key': os.getenv('OPENAI_API_KEY'),
'timeout': 10,
},
'tpm': 240000,
'rpm': 1800,
},
],
'num_retries': 2,
'allowed_fails': 3,
'fallbacks': [
{
'user-azure-instance': ['user-openai-instance']
}
]
}
Step 2: Send user_config in extra_body
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
)
# send request to `user-azure-instance`
response = client.chat.completions.create(model="user-azure-instance", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"user_config": user_config
}
) # 👈 User config
print(response)
Step 1: Define user model list & config
const os = require('os');
const userConfig = {
model_list: [
{
model_name: 'user-azure-instance',
litellm_params: {
model: 'azure/chatgpt-v-2',
api_key: process.env.AZURE_API_KEY,
api_version: process.env.AZURE_API_VERSION,
api_base: process.env.AZURE_API_BASE,
timeout: 10,
},
tpm: 240000,
rpm: 1800,
},
{
model_name: 'user-openai-instance',
litellm_params: {
model: 'gpt-3.5-turbo',
api_key: process.env.OPENAI_API_KEY,
timeout: 10,
},
tpm: 240000,
rpm: 1800,
},
],
num_retries: 2,
allowed_fails: 3,
fallbacks: [
{
'user-azure-instance': ['user-openai-instance']
}
]
};
Step 2: Send user_config
as a param to openai.chat.completions.create
const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:8000"
});
async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'gpt-3.5-turbo',
user_config: userConfig // # 👈 User config
});
}
main();
Pass User LLM API Keys
Allows your users to pass in their OpenAI API key (any LiteLLM supported provider) to make requests
Here's how to do it:
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={"api_key": "my-bad-key"}) # 👈 User Key
print(response)
More examples:
- Azure Credentials
- OpenAI JS
Pass in the litellm_params (E.g. api_key, api_base, etc.) via the extra_body
parameter in the OpenAI client.
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"api_key": "my-azure-key",
"api_base": "my-azure-base",
"api_version": "my-azure-version"
}) # 👈 User Key
print(response)
For JS, the OpenAI client accepts passing params in the create(..)
body as normal.
const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:8000"
});
async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'gpt-3.5-turbo',
api_key: "my-bad-key" // 👈 User Key
});
}
main();